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Abstract—Context provides additional information in detec-
tion and tracking and several works proposed online trained
trackers that make use of the context. However, the context
is usually considered during tracking as items with motion
patterns significantly correlated with the target. We propose a
new approach that exploits context in tracking-by-detection and
makes use of persistent false positive detections. True detection as
well as repeated false positives act as pointers to the location of the
target. This is implemented with a generalised Hough voting and
incorporated into a state-of-the art online learning framework.
The proposed method presents good performance in both speed
and accuracy and it improves the current state of the art results
in a challenging benchmark.

I. INTRODUCTION

Context is very important in object tracking and many
recent approaches make explicite use of the context to improve
the tracking results [1], [2], [4], [5]. Exploiting the spatial
arrangements of the context in a scene as well as correlated
motion of neighbouring objects can help localise the position
of the tracked object with greater accuracy. Furthermore, it can
act as a predictor when the object is absent from the scene as
in [1]. Recent work in [6] emphasises the role of the context
in a scanning window based detection, and demonstrates that
the position of the target can be predicted faster and more
accurately by using the context information.

Our work builds upon the methods that add context to the
tracking process but also on the idea of Implicit Shape Model
(ISM) [17], [18]. ISM is a very successful offline trained object
detector based on interest point descriptors, codebook model,
and generalised Hough voting. Generic interest point detectors
and descriptors [3] as well as matching limits the efficiency
of this approach and makes it difficult to adapt to online
learning problems. However, an efficient and discriminatively
trained detector can provide a few but more reliable candidates
for object locations than a generic interest point detector.
Moreover, explicit modelling of various context objects [1],
[4], [5] adds to the complexity of the online learning and
detection. Our goal is to avoid explicit modelling of the
context regions, and to exploit persistent detections resulting
from an online learnt target model as predictors of the target
position regardless their motion pattern. Furthermore, the idea
is to use true positives as well as false positive detections
in the Hough voting framework to improve the detection
of the object of interest. This use of false positives is an
alternative way of improving the classifier compared to directly
using false positives as negative appearance examples during

online training. Some false positives are extremely similar to
the target and may significantly contribute to overfitting the
classifier that may become too discriminative. In other cases
an efficient classifier may not be sufficiently discriminative
and generates false positives despite good training examples.
The proposed approach is addressing both problems in online
trained tracking-by-detection system. One of the very well
performing online learnt detectors/trackers in the recent eval-
uation [7] is tracking-learning-detection (TLD) from [9]. We
adopt this learning approach in our method and implement the
ideas mentioned above within TLD framework.

In contrast to the other tracking methods that exploit
context, we consider all detections (true and false), provided
by a classifier trained for a single object, as pointers to the
true location of the target. In our approach a discriminative
detector trained on the target examples acts as an object of
interest extractor which gives less regions to process than in
case of interest points but more likely to correspond to the
target. The main contributions of the proposed method are:

• We propose a new approach that exploits locations
of all candidate detections including false positives
to indicate the location of the true object, thus all
detections are used as predictors of the target position.

• We propose an efficient implementation based on the
generalised Hough transform which can be used to
extend any other existing online detector.

• We incorporate the proposed method into the tracking-
learning-detection framework [9] and show that it
significantly improves the results on a number of
challenging sequences.

A. Related work

One of the first approaches that discussed the role of
context in improving robustness of a tracker was the work by
Cerman et. al. [2]. The basic idea is to automatically identify
any part of the background (i.e. regions that are not parts of
the target) that moves in a consistent way with the object and
lies at the boundary space between the target object and the
background. In other words, the object is constantly expanded
until it converges to a larger region that moves in a consistent
way. For example, if the goal is to track a head, the model
may extend to the region around the shoulders of the person
as it is often moving in a correlated way with the target.
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Grabner et al. [1] extend this idea by devising a frame-
work based on keypoints rather than identifying neighbouring
areas by correlated movements. They introduce the so called
supporters which can be defined as keypoints that move in
a consistent manner with the target object, and they can be
located on the object itself, or arbitrarily far away from the
object. With a simple model that uses the generalised Hough
transform to localise the object from individual votes of the
supporters, they are able to identify the global maxima of the
hough voting space and infer the position of the object, even
in the extreme cases when it is fully occluded or it moves
outside the scene boundaries.

Ba Dinh et al. [5] propose a different method of exploiting
context during object tracking by making use of two semantic
object categories in a scene. One of the categories are the
supporters, similarly to [1] which are defined as keypoints
around the object that move in a similar way. However, they
also point out that there exists a specific class of objects during
on-line detection and tracking, which have similar appearance
to the target object and are called distracters. In any tracking by
detection system, there is a very high probability that drifting
may occur towards the distracters, because of their significant
similarity to the target. To address this problem, the authors
track the distracters simultaneously with the target, thus are
able to prevent drifting to one of the distracters.

Another approach based on motion consistency is the
work presented by Stalder et al. [10], where a fast motion
segmentation method is used in order to group similar moving
keypoints into clusters that represent objects based on the no-
tion of dynamic objectness. Those clusters are later classified
as either belonging to the object or to the background. By
growing the keypoint based model for both the object and the
background, they are able to identify new clusters and adapt
to new appearances of the object on-line.

Sun et al. [11] use GLAD method [12] for integrating labels
from annotators with unknown expertise in order to use the
context from neighbouring objects and specific parts of the
target to simultaneously track both the object as well as the
context. The spatial configuration of the context models is then
used to infer the final position of the target. However, those
supporting objects (helpers) are not discovered automatically,
and have to be manually annotated at the beginning of the
process.

Finally, Yang et al. [13] propose a method to automatically
discover auxiliary objects during tracking, which co-occur and
present consistent motion correlation with the target. They later
simultaneously track the auxiliary objects in order to verify the
target position more efficiently.

B. Overview

The proposed method is inspired by the recent advances
in the context based detectors and trackers outlined in several
works above. We make use of an efficient classifier which ex-
hibits very high recall but low precision. We use fern classifier
similar to the one proposed in [14] that was successfully used
in an online trained detector in TLD [9]. The fern classifier
usually returns a large number of candidates of the object
location that have to be validated by a less efficient but more

discriminative classifier in TLD. Some of the candidate detec-
tions persistently return in subsequent frames despite adding
these examples to the negative training set during online learn-
ing. Labelling these hard negatives is challenging due to their
high similarity to the target in the object representation space.
In [5] such objects are called distracters and are modelled and
tracked together with the target object, which eliminates them
from the list of candidates and prevents drifting. However, in
contrast to their similar appearance their location is different
from the true object. We propose to incorporate the location
of these candidates with respect to the target location into
the detection process. Moreover, in our work, we do not
differentiate between the target and the distracters, and thus we
consider all the candidates that are returned by the classifier
as pointers. An illustration of the proposed method, together
with the two closely related approaches from [1] and [5], are
presented in Figure 1. We propose to infer the position of the
target based on the configuration of the pointers positions and
we incorporate this idea into the TLD approach. Each of the
pointers casts a vote for the target position learnt from previous
frames, and the accumulated votes in the voting space indicate
the position of the target in the current frame.

II. PROPOSED APPROACH

In this section we present our proposed approach that
includes the initialisation, detection and update of the model.

A. Model initialisation

The first step of the process is to initialise the object
location in the first frame and to train the classifier. In principle,
any classifier that is efficient, and can provide many detection
candidates is suitable. The objective is to use a classifier
with high recall, which may come at the expense of low
precision. We use the fern based classifier from TLD. This
classifier evaluates a large number of sliding windows from
every single frame, and returns a set of candidates to the
subsequent detection process. However, further validation of
the returned candidates is crucial for the tracker’s accuracy.
TLD uses a nearest neighbour classifier based on normalised
cross-correlation of patches to identify true positives and
discard the hard negatives. Instead, we propose to associates
a pointing function to each of the candidates. The role of this
function is to estimate a displacement vector that points to the
position of the target. Note that the position of the target is
known in the first frame only and in the subsequent ones it is
estimated from the pointers.

Let xo, yo denote the centre of the bounding box that
represents the target in the first frame. We train and evaluate
the fern detector in the first frame to get a list of detection
candidates. We also lower the classification threshold, in order
to obtain a list of detections that include the target’s bounding
boxes as well as a set of false positive (non-target related)
bounding boxes. Each candidate is represented by a tuple
P = {β, x, y,Δx,Δy, f} where β is a descriptor extracted
from the detected bounding box, x and y are the coordinates
of its centre, Δx and Δy represent the distance in both
dimensions between the detection and the target Δx = xo−x,
Δy = y0−y and f is the frame number in which this specific
bounding box was seen. Any descriptor can be used, but in
our implementation we use BRIEF [16] due its efficiency and
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Fig. 1: Grabner et al. [1] (left) use a set of keypoints that move in a significantly correlated way with the target as supporters
in the tracking process. Note that the supporters can be either on the target object itself (green points) or on other objects (red

points). Ba Dinh et al. [5] (middle) track objects with similar appearance (red boxes) to the target (green box) to prevent
drifting during tracking. Our approach (right), uses all the detections from a classifier to point at the position of the target. Note

that those detections can be from the target itself as well as from arbitrary scene objects with similar visual characteristics.

matching accuracy that was recently demonstrated in [3]. Note
that we do not label the candidates, but instead we store the
Δx,Δy values that point to the target. The pointers with low
values of Δx,Δy are more likely to represent the object than
pointers with large values.

B. Detection process

Once the model is initialised in the first frame, there exist
a set of pointers in the database that can be used for the
detection in the following frames. In the next frame, the fern
classifier provides a set of candidates. BRIEF descriptor is
extracted for each candidate P∗ = {β∗, x∗, y∗,Δx∗,Δy∗, f∗}
and matched against the pointers from the database to find its
nearest neighbour. The list of tuples is processed sequentially
by first considering the neighbours in the spatial coordinates
and then by comparing the BRIEF descriptors:

RDB = {p, ||(x∗, y∗)− (xp, yp)||E < Tc, ∀p ∈ DB} (1)

PNN = arg min
p∈RDB

(||βp − β∗||H)

where Tc is a spatial distance threshold, || · ||E is the Euclidean
distance between box centres and || · ||H represents Hamming
distance between BRIEF descriptors. The use of two stage
nearest neighbour search significantly accelerates the process-
ing and enforces the temporal consistency of the pointers. The
parameters of the nearest neighbour match PNN are used to
calculate the coordinates of the bin in a discretised voting space
V which is incremented:

V(x∗ +ΔxNN , y∗ +ΔyNN ) := (2)

V(x∗ +ΔxNN , y∗ +ΔyNN ) +
τ

θ(f∗ − fNN )

where τ is a scalar, and θ(·) is a monotonically decreasing
weighting function. θ(·) gives lower weights to votes that
come from pointers that were observed earlier in the sequence.
Intuitively, a pointer that was observed a long time before
the current frame is less important than the ones observed
in the previous frame. A more sophisticated approach that
employs Gaussian based weighting similar to the one used
in [1] can be adopted. Finally, once all the candidates cast

their votes, the maximum in the voting space V is detected.
We consider valid target detections as the ones that overlap
with this maximum, and we estimate the target location as the
average of the valid bounding boxes. This formulation also
allows the case where the target is not found in the frame. In
this case there are typically no bounding boxes overlapping
with the global maximum of V .

C. Updating the model

Once the detection described above has returned an es-
timate of the current position of the target, similarly to
the initialisation process, we form a set of tuples P =
{β, x, y,Δx,Δy, f}, one for each of the observed pointers,
and store them in the database. We keep the previously
collected pointers for a fixed number of frames. If a pointer
representing the same object appears in consecutive frames,
the most recently collected one has the largest contribution to
the voting process based on function θ(·). Similarly to [9], in
order to prevent drifting we do not update the model if the
observed descriptor differs significantly from the previously
seen target descriptors.

D. Implementation details

The database is used to accumulate the past history of the
sequence but its size has a negative effect on the speed of the
nearest neighbour search in the descriptor space, we therefore
limit it to improve the efficiency. We limit the size a queue that
holds the pointer tuples, and when the queue is full, we discard
the oldest pointers from the model. Using this technique, once
the queue is filled, our method performs at constant speed.

Another parameter that affects the speed is the number of
pointers per frame. As one can expect increasing the number
of pointers per frame increases the tracking performance, but
reduces the speed of tracking. Thus in our implementation we
set this number to be 100, and the maximum size of the pointer
queue to 2000. This allows for the system to run with a speed
of 4 − 11 fps depending on the size of the original image.
This speed is with Matlab implementation, which leaves much
scope for improvements.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: Outline of the proposed method. (a) Input frame (b)
Candidates provided by the classifier (c) Each candidate casts
a vote indicating the target’s position (d) The resulting voting

space V (e) Valid detections that overlap with the global
maximum of the voting space (f) Final result as the average

of the valid detections.

A simplified outline of the method is presented in Algo-
rithm 1 and an illustration of the detection steps is in Figure 2.
As it can be seen from Figure 2 (c) there are some candidates
that cast their votes in incorrect locations, but these are not
detected in the voting space as the local maxima in such cases
are very low.

III. RESULTS

In this section we present qualitative and quantitative re-
sults to demonstrate the performance of the proposed method.
We use the benchmark data from [7] which contains a large
set of annotated video sequences. We compare to two other
state-of the art methods and discuss the results.

A. Evolution of pointers

Figure 3 shows the evolution of the pointers over time
on the test sequence CarScale. In the first frame of the
sequence, where the model is not yet initialised, all the strong
pointers are from detections that represent the actual object. In
the next few frames, the bounding boxes start to act as pointers
and are incorporated into the detection process. The green lines
indicate the locations for which the bounding boxes vote. All
pointers are visually similar to each other and they are selected
based on nearest neighbour search by the binary BRIEF
descriptors, therefore there are many mismatches that lead
to incorrect voting locations. The boxes pointing to incorrect
locations are represented by the red lines in Figure 3. However,

Algorithm 1 Pointer tracking

1: if first frame then
-Train the classifier from initial bounding box and random
negatives.
-Collect pointers: All detections from the classifier.
-Initialize DB: For each pointer, extract and store the
representing tuple P = {β, x, y,Δx,Δy, f}.

2: end if
3: for next frames do

- Clear voting space V .
- Get candidates from the classifier.

4: for all candidates do
- Extract the tuple {β∗, x∗, y∗, f∗}
- Update V using (Δx,Δy) from the PNN match.

5: end for
- Find global maximum m in V
- Estimate target bounding box from candidates that over-
lap with m
- Update the target centre xo, yo

6: for all candidates do
- Evaluate new Δx∗ = xo − x∗ and Δy∗ = yo − y∗
- Form pointer tuple from candidate P∗ and store in

DB.
7: end for
8: end for

since the number of pointers per frame is large, enough votes
accumulate in the correct location and the maximum in the
voting space can be estimated with good accuracy.

B. Recall-Precision results

To assess the performance of the proposed method, we
use challenging videos from the recently released dataset used
in a large scale comparison of online trackers [7]. In this
comparison two approaches demonstrated particularly high
performance, Struck [15] and TLD [9]. We focus on the
sequences where either of these two failed to track through the
entire sequence. The precision and recall scores are calculated
based on the overlap criterion [7]. A detection is considered
valid, if the overlap between the ground truth bounding box
Bgt and the tracker result Bres is greater than 0.5, where the
overlap o is defined as o = Bgt ∩Bres/Bgt ∪Bres.

The results presented in Table I show that the proposed
system leads to a better performance than TLD approach [9]
and Struck [15]. Our method outperforms TLD in 11 out of
13 sequences and Struck in 6 sequences in terms of recall, and
in 5 sequences in terms of precision.

C. Discussion

The main strength of the proposed method is that all
detections, both true and false positives, are used to localise
the object. This makes the tracker more robust to drifting, and
leads to higher average precision and recall than for the other
two trackers. For example, in the Crossing sequence, both
TLD and Struck drift due to significant illumination change on
the boundary of the shadow as it is shown in the top row of
Figure 4. It happens early in the sequence which significantly
lowers the performance scores of both trackers. A comparison
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Fig. 3: The evolution of the pointers over time. In the
initialisation of the model (top image), all the pointers

originate from bounding boxes representing the object to be
tracked. However, during the update process, we see that

several new pointers appear and contribute to the detection
process.

with Struck shows that while in general Struck gives excellent
results in many videos, it does not adapt to different scales of
the objects, and assumes that the object is always present in the
scene thus not suitable for sequences where objects frequently
disappears.

A comparison of our method to TLD [9] is essential,
since both methods have similar detection processes. In both
systems, a set of object candidates that are returned from
the fern classifier are evaluated in order to either localise the
object, or to identify a full occlusion/ absence of the object.
The difference between the two methods is that our approach
does not need to validate or assign a label to each of the
candidates provided by the fern detector. Any error in such
validation leads to either lower recall or a drift, due to the
presence of negative candidates that are very similar to the
object of interest. Instead, we consider every candidate as a

TABLE I: Precision-recall results

Sequence TLD [9] Struck [15] Ours

Name Recall/ Recall/ Recall/

Precision Precision Precision

Car4 0.50 / 0.60 1.00 / 1.00 0.97 / 1.00

CarDark 0.72 / 0.72 1.00 / 1.00 0.69 / 0.69

CarScale 0.80 / 1.00 0.79 / 0.79 0.99 / 0.99

Couple 0.58 / 1.00 0.88 / 0.88 0.96 / 0.99

Crossing 0.70 / 0.70 0.39 / 0.39 1.00 / 1.00

David3 0.29 / 0.32 1.00 / 1.00 0.92 / 0.94

Deer 0.80 / 1.00 1.00 / 1.00 0.75 / 0.91

FaceOcc2 0.45 / 1.00 1.00 / 1.00 0.83 / 0.83

Fish 0.60 / 0.87 0.87 / 1.00 1.00 / 1.00

Football 0.79 / 1.00 1.00 / 0.94 0.80 / 0.80

Freeman1 0.30 / 0.52 0.52 / 0.93 0.95 / 0.96

Freeman4 0.18 / 0.28 0.47 / 0.47 0.71 / 0.74

MountainBike 0.37 / 0.61 1.00 / 1.00 0.93 / 0.93

Average 0.55 / 0.74 0.87 / 0.87 0.88 / 0.90

potential supporter that can point to the true location of the
object. Thus several pointers can aggregate around a specific
position in the hough space. This can be observed in the
Freeman4 sequence with a face as the object of interest,
presented in the second row of Figure 4. While Struck has
drifted to a dissimilar object, TLD drifts to other faces, which
are hard negatives in this scene and are validated as true
positives by the nearest neighbour normalised cross-correlation
classifier in TLD. However, since in our representation those
false detections are recorded as pointers, together with the
distance vector to the target, it is unlikely that a significant
local maximum will be accumulated in the voting space around
such candidate as it will not be supported by other pointers.
This example illustrates the benefit of using the hard negatives
as pointers, since their re-occurrence amongst the detection
results makes it possible to use them for spatial voting rather
than for improving the decision boundary of a discriminative
classifier.

IV. CONCLUSIONS

We have presented a novel idea of using true and false
positive detections in tracking to localise the object of interest.
Our method is based on a fast fern classifier, and a new
representation of candidate detections which we call pointers.
We demonstrated that false positive detections can be used
differently than for refining a decision boundary of an ap-
pearance based classifier. Our approach is applicable to any
tracking by detection system with online learning. It leads to
improved results in particular when there are many similar
objects in the scene or the classifier has a high false positive
rate. This is a frequent problem in application scenarios where
a high classification accuracy has to be sacrificed for high
efficiency of the system. We incorporated this approach into
TLD tracker which significantly improved its performance.
Our evaluation results on 13 challenging sequences show
improved precision and recall over TLD as well as Struck
which are considered the state of the art tracking approaches.
This is a significant achievement considering the simplicity of
the proposed method.
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Fig. 4: Comparison of the results from TLD [9] (green), Struck [15] (blue), and the proposed method (red). Unlike the other
methods, in all cases our approach localises the object successfully, due to the support from the pointers. Top to bottom:

Crossing, Freeman4, Carscale, and Freeman1.
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