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Abstract

In this paper we propose a novel approach to generate

a binary descriptor optimized for each image patch inde-

pendently. The approach is inspired by the linear discrimi-

nant embedding that simultaneously increases inter and de-

creases intra class distances. A set of discriminative and

uncorrelated binary tests is established from all possible

tests in an offline training process. The patch adapted de-

scriptors are then efficiently built online from a subset of

tests which lead to lower intra class distances thus a more

robust descriptor. A patch descriptor consists of two binary

strings where one represents the results of the tests and the

other indicates the subset of the patch-related robust tests

that are used for calculating a masked Hamming distance.

Our experiments on three different benchmarks demonstrate

improvements in matching performance, and illustrate that

per-patch optimization outperforms global optimization.

1. Introduction

Significant progress has been made in creating new fea-

ture descriptors that are either based on floating point arith-

metic, such as SIFT [9], SURF [1] and GLOH [11] or

on binary strings and hamming distances like BRIEF [3],

ORB [14] and BRISK [8].

Large datasets with correspondence ground truth enabled

learning methods to be used to improve the descriptor per-

formance [19]. One such approach consists of optimally

learning descriptor parameters [20]. Another research di-

rection is learning discriminative projections from high di-

mensional feature space to subspaces with better deter-

minability. In [10, 2] the descriptor optimization is similar

to the LDA based projections, which simultaneously mini-

mizes distances intra-class and maximizes them inter-class.

Similarly, the authors of [15] propose a convex optimiza-

tion for descriptor learning. However, in all these methods,

the intra-class is formed by positive examples of correctly

matched patch pairs while in LDA by various instances of

the same image category / content. LDA projections can-

not be learned for each patch independently due to practical

Overview of the proposed BOLD descriptor

query patch A online creation of synthesised views BOLDA

query patch B online creation of synthesised views BOLDB
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Figure 1. In contrast to typical approaches that use the same mea-

surements for all patches, we adapt the descriptor online to each

patch. The blue line ends indicate the selected binary tests from

a common superset, based on the measurements from the synthe-

sized views of each patch.

complexity issues, e.g. inefficient distance calculation and

matching. Thus in the case of image patches, discriminant

projections are learned globally and lead to a limited im-

provement. Local discriminant projections are expected to

give better results if adapted to each class independently.

In the context of binary descriptors, BRIEF was im-

proved in [14] by selecting uncorrelated tests that maximize

the variance across training patches. Learning of discrimi-

nant and low dimensional spaces has also been applied to

binary descriptors. DBRIEF [17] is built by using the inter

to intra class distance objective adapted to a binary descrip-

tor. A set of discriminative projections is computed and ap-

proximated with a set of predefined dictionaries in order to

generate a binary feature vector. The recently proposed Bin-

Boost descriptor [16] applies boosting to learn a set of bi-

nary hash functions that achieve a performance comparable

to real-valued descriptors. Both DBRIEF and BinBoost are

not based on binary tests therefore the extraction process is

less efficient. A different research direction is to use coding

methods to make the descriptors more compact [4].

The various feature descriptors proposed in the literature

differ in design, theory and implementation, but a common

approach is the computation of the final feature vector from

a fixed set of measurements that are applied to all described

patches. It follows that the measurements are not varied

depending on the content of the patch. This is based on
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Figure 2. Error rates across different sets of binary tests Sx for

5 classes of the Trevi dataset [19]. The performance of each set

significantly varies across different patch classes.

important practical considerations which primarily include

convenience in using various distance metrics and efficient

matching techniques for large scale problems. Moreover,

learning based components are trained offline as they are

typically too computationally intensive for any online pro-

cessing. In BRIEF descriptor [3], four different arbitrarily

designed configurations of binary tests were evaluated on

an entire training set and the best performing configuration

was selected. However, intuitively different patch appear-

ances can be best represented by different measurements.

For example, the results from [18] show that recognition

performance can be improved by adapting the spatial struc-

ture of SIFT-based descriptors to each class.

In this paper we propose an approach which combines

the advantages of efficient binary descriptors with the im-

proved performance of learning-based descriptors. We

demonstrate that there is no single set of measurements that

is globally optimal for all patches in a dataset and signif-

icant improvement can be gained by adapting the binary

tests to the content of each patch. The measurements are

first designed to maximize the inter-class distances and then

a subset is selected online for each patch to minimize the

intra-class distances. This is done efficiently in such a way

that the extraction time is comparable to other binary de-

scriptors. The proposed online selection of discriminative

binary tests can be applied to other techniques such as deci-

sion trees or ferns. Nearest neighbour matching of descrip-

tors is also efficient by calculating a modified Hamming

distance. We evaluate the proposed descriptor on different

benchmarks and demonstrate performance that matches that

of SIFT, with computational efficiency that matches that of

BRIEF.

2. Intra and inter-class optimization of binary

descriptors

In this section we first demonstrate the improvements in

matching accuracy that can be obtained by adapting a set of

binary tests to the input. We then present a method for adap-

tive discriminative selection of binary tests, and its efficient

implementation.

2.1. Performance of random binary tests

In descriptors such as BRIEF where random tests are in-

volved, a random number generator is typically used with

an arbitrary seed which guarantees the repeatability of gen-

erated values. For example the OpenCV implementation of

BRIEF uses 42 as the seed. To demonstrate how the perfor-

mance can be affected by using different feature sets we

generate 5 different binary test sets that are subsets of a

larger set based on five different random seeds. All these

sets are generated using the Gaussian distribution proposed

in [3], therefore with a large number of tests the final de-

scriptors appear very similar to each other. However, their

ability to robustly represent different image patches varies

significantly. This is illustrated in Figure 2 where 5 classes

from the Trevi dataset [19] are shown, together with the

95% matching error rates for each of the feature sets. The

error rate is the percentage of false matches when 95% of

correct matches are obtained, which was used in other eval-

uations on this dataset [20, 16]. Each class consists of 5-8

patches that originate from the same 3D point and the dis-

tances between these patches are referred to as intra-class

distances.

The first observation from Figure 2 is that the matching

error for some patches is significantly higher than for oth-

ers independently of the feature set used. However, another

important observation is that although the feature sets dif-

fer only in the exact random locations of their binary tests,

their performance significantly varies for different patches.

E.g. S3 is the best performing descriptor for the first class,

while it is the worst for the second class. S2 gives an error

rate larger than 40% for the 4th class, while all the other

descriptors give error rates very close to 0%.

Typically, a global optimization such as the one used in

DAISY [20] or BinBoost [16], aims at finding a configura-

tion that leads to the lowest average error across all classes

in a dataset. In our example S5 is globally the best with

the average error rate of approximately 11%. At the same

time, by choosing the best performer for each class indepen-

dently, an overall error rate of 5% could be achieved. Note

that the configuration S3 uses the same seed as the openCV

library. From the results above, it is clear that a method that

can locally adapt the descriptor extraction method to each

patch will outperform a global fixed configuration, regard-

less of the size of the global training data.

A naive implementation of this idea is to store a ver-

sion of the entire dataset for each locally adapted descrip-

tor. However, the practical implications such as memory

and computational complexity in particular, are difficult to

deal with. Another issue is that while in the experiment

above we can identify the best configurations per patch a

posteriori, a method to identify such descriptors a priori us-

ing as only input the patch to be described is not obvious.
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2.2. Learning discriminative descriptors

It has been frequently demonstrated that descriptors per-

form better when the separation between the intra-class dis-

tances and the inter-class distances is maximized. Given a

set of labelled matching and non-matching image patches,

methods like [2, 10] seek to find a projection w∗ s.t. w∗ =
arg max

w

(wTAw)/(wTBw) which is the ratio of the in-

ter A to intra-class B covariance along the direction w. In-

tuitively, such methods seek to minimize the expected dis-

tance between patches annotated as similar and maximize

the expected distance between patches annotated as dissim-

ilar. This has been done globally for real-valued descriptors

in [2, 10, 17] with the use of a large set of negative and

positive pairs of patches in an offline learning process.

In the following we propose an approach that exploits

this idea to optimize a binary descriptor for each patch in-

dependently.

2.3. Properties of binary tests

Let {x1,x2, · · ·xN} denote a set of binary descriptors

of dimensionality D, extracted from N patches which can

be arranged in matrix X of size N × D. Each column ci
with i ∈ [1, ...D] represents a test/dimension of the binary

descriptors and can be viewed as a binary string of length

N that follows a Bernoulli distribution with a certain prob-

ability of values 1 or 0. Matrix X can then be expressed

as the outcome of N trials of D Bernoulli distributions Bi

with i ∈ [1 · · ·D]. If the mean value of Bi is ρi, then the

variance is σi = ρi(1 − ρi) where ρi is the ratio of 1s

and (1 − ρi) is the ratio of 0s in column ci. Variance σi

of the ith dimension has a direct relation with the Shannon

entropy of the binary string of the corresponding column ci
i.e. Ei = −ρi · log2ρi − (1− ρi)log2(1− ρi).

A required characteristic of such binary strings is to ex-

hibit a high variance–entropy values if descriptors xn be-

long to different classes and a low variance–entropy values

if descriptors xn belong to the same class. For the former,

the discriminative dimensions are the ones where the vari-

ance reaches the maximum possible value of 0.25 (entropy

reaches 1). The latter implies that the process that gener-

ates the values for this specific descriptor dimension, is sta-

ble and robust to noise, deformations, illumination changes

etc. In an ideal case, with a perfect descriptor all columns

of intra class descriptors X would have entropy and vari-

ance equal to zero. Given X and Bernoulli distributions

Bi(ρi, σi) associated with test/dimension i of X, the ex-

pected average distance E[∆] between descriptors in X is

related to the sum of the variances σi. This can be derived

from:

E[∆intra] =
1

D

D
∑

i=1

E[∆i] (1)

where E[∆i] is the expected intra-class distance value for

dimension i:

E[∆i] =
1

N2

N
∑

m=1

N
∑

n=1

|xm,i − xn,i|⊕ (2)

where |xm,i−xn,j |⊕ is the Hamming distance between two

binary values. Since |xm,i − xn,j |⊕ = (xm,i − xn,j)
2 we

obtain:

E[∆i] =
1

N2

N
∑

m=1

N
∑

n=1

x2
m,i − 2

1

N2

N
∑

m=1

N
∑

n=1

xm,ixn,i

+
1

N2

N
∑

m=1

N
∑

n=1

x2
n,i = 2E[x2

i ]− 2E[xi]
2

(3)

The variance of dimension i is therefore directly re-

flected by the fraction of 1s in column i of matrix X.

From the above it is clear that dimensions with high vari-

ance increase the intra-class distances, and dimensions with

low variance decrease it. Low variance is required for de-

scriptors from the same class (positive patches) and high

variance for descriptors from different classes (negative

patches).

It was demonstrated in [2] that discriminant projection

of SIFT dimensions be achieved in a two stage process

which first diagonalizes the intra-class covariance and then

performs a global PCA. Thus the dimensions are decorre-

lated and oriented along dominant directions in the real-

valued space. This process can be adapted to learning of

discriminative binary descriptors by first selecting uncorre-

lated the tests/dimensions that maximize the inter-class dis-

tances globally and then by short-listing tests that minimize

the intra-class distances locally. Correlation Cij between

tests i and j in matrix X can be measured on inter-class

patches by the Hamming distance between the correspond-

ing columns:

Cij = |
2

N

N
∑

m=1

|xm,i − xm,j |⊕ − 1| (4)

Thus the value of Cij varies between 0 and 1, with 1 for per-

fectly correlated tests. Suitable dimensions can be chosen

by thresholding this measure.

The first two steps of the process, the global selection

of discriminative dimensions and the decorrelation can be

done offline from a large set of possible binary tests and

random patches. The final selection of tests that minimize

the intra-class variance has to be done per patch which re-

quires efficient online implementation.

2.4. Efficient extraction of online learned descrip­
tors

In this section we present the details of our online learned

descriptor. As discussed in the previous section this is done
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in two steps, namely inter-class offline optimization and

intra-class online selection of tests.

2.4.1 Global optimization

Global optimization is based on a large set of N diverse im-

age patches of normalized size from the Trevi dataset [19]

which is different from the datasets used in our experiments.

Our features fi = (t1, t2)i are sets of binary tests that

consist of comparing pixel intensities in pairs of locations

t1 and t2 within the patch. For a grid of P × P locations

within a patch (e.g. P = 32) the total number of tests is

M =
(

P 2

2

)

. Further constraints on how test are generated

can be introduced here. These may exclude locations on

patch boundaries, large distances between t1 and t2, etc.

In global optimization the goal is to identify the subset

of discriminative features. In the case of binary tests, this

consists of finding features that give a large variance across

inter-class examples as discussed in section 2.3. This re-

quires calculation of all test responses in each of the N
patches. It results in a set of N binary strings of dimen-

sionality M with xn representing the bitstring of patch n.

X is a matrix with descriptors xn as rows. We then calcu-

late the fraction of 1s in column i of X and sort the columns

according to that measure. This ranks high the discrimina-

tive tests, which exhibit a high variance across a random set

of inputs.

The next step is to select a subset of uncorrelated fea-

tures. We follow the greedy approach from [14] which starts

by selecting the first high variance tests from the ranked list

and then searches for another high variance test with the

correlation score Cij < τC (e.g. τC = 0.2). The process

continues by verifying at each iteration the correlation be-

tween the candidate and all selected tests. The selection

stops when a defined number G of tests has been found (e.g.

G = 512).

Note that the global optimization is done offline as it

concerns to whole set of possible tests and diverse image

patches that represent negative examples in section 2.3.

2.4.2 Local online learning

As demonstrated in [16, 14] a set of globally optimized tests

outperform a set of random tests in terms of matching er-

ror rates. However, as we show in Figure 2 different sub-

sets of tests minimize the intra-class distances for individ-

ual classes of patches and can achieve superior performance

compared to the globally optimized features.

To fully benefit from the LDA-like optimization, intra-

class distances have to be minimized. We consider each

patch as a separate class, therefore this optimization has

to be performed online during descriptor extraction. Given

that a patch is a single instance from a class, additional ex-
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Figure 3. 95% matching error rate for Yosemite 100k with respect

to various affine examples in intra-class optimization of binary

tests. Small affine transformations and few examples are sufficient

to achieve low error rate.

amples have to be synthetically generated to estimate intra-

class variance E[∆i]. This approach proved successful in

many applications, in particular in the context of local im-

age patches affine projections are typically applied [2, 13].

Generating various geometric views of the same patch

can be done easily (e.g. with affine matrices and bilin-

ear interpolation), but in large datasets or real time appli-

cations the computational complexity would grow signifi-

cantly. However, given the globally optimized set of binary

tests, which is of a limited size, we can avoid the need for

patch warping by applying the geometric transformations

directly to the pixel locations (t1, t2)i of each test fi rather

than to the image patches. For each feature, a new set of fea-

tures can be created, which consists of affine-transformed

versions of itself. Furthermore, since the set of tests is fixed,

the locations of tests under various affine transformations

can be stored in a lookup table rather than calculated on-

line. Thus, our set of tests is extended in a lookup table to

different fia = (t1, t2)ia where a indicates an affine trans-

formation of test fi.

We examined various affine transformations to generate

intra-class variances and to identify stable tests. We report

the results in Figure 3 in terms of 95% error rate for 100k

patches from the Yosemite dataset. Parameters of affine

transformations to generate positive examples were exten-

sively studied in [2] with the conclusion that small random

transformations lead to better results. We make similar ob-

servations and notice that small affine projections with a

maximum rotations of 10o to 20o are the ones that give the

best results. It is also worth noting that as few as 2 trans-

formations are sufficient to identify tests that minimize the

intra-class variance. This is an important observation as a

small number of transformations leads to few affine lookup

tables that need to be created. This then leads to more effi-

cient online evaluation of binary tests which consist only of

sampling and comparing pixel values in the tests.

Given the binary strings generated by tests fia and rep-

resented in intra-class matrix Xia, a subset of tests fi that

minimizes the variance along dimension a is selected. In

our implementation we select only the tests for which the

variance is 0. However more complex methods can be ap-

plied, such as variance sorting and thresholding.

Having identified the sets that are to be included in the
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Figure 4. Negative (inter-class) and positive (intra-class) distance

distribution of globally (top) and locally (bottom) optimized de-

scriptors. The intersection area between the two distributions is

reduced from 13.97% to 9.75% for globally vs. locally optimized

descriptors. Thus the number of mismatches is reduced.

BOLD descriptor, each patch is represented by the results

xn of the adapted binary tests and a second binary string

yn of length G where 1s indicate which tests are valid for

patch n. Dn is the number of 1s in yn which may differ for

every patch n.

2.4.3 Matching of locally adapted descriptors

After global and local online selection of discriminative

tests during descriptor calculation each patch is represented

by a binary string xn and a binary mask yn, both consist

of G bits. The matching of two descriptors is done using

the following symmetric Hamming distance between the

descriptors and their masks:

H(xm,xn) =
1

Dm

ym∧xm⊕xn+
1

Dn

yn∧xm⊕xn (5)

The operation xm ⊕ xn is performed only once and log-

ical AND is performed between the resulting string and the

masks yn and ym.

2.4.4 Global vs. local optimization of binary tests

In this section we investigate the properties of the proposed

descriptor.

Figure 4 (top) shows the distribution of intra and inter

class distances for 512 globally optimized tests. Positive

patch pairs from Yosemite dataset represent intra-class and

negative pairs correspond to inter-class. The selected tests

exhibit high variance across negative patch pairs and small

correlation Cij between tests (e.g. < 0.2). In contrast,

Figure 4 (bottom) shows distance distributions for our lo-

cally optimized tests, where is each patch was described by

a different subset of tests from the globally optimized set.
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Figure 5. Histograms of descriptor dimensionality after the online

selection of locally optimized tests. G denotes the dimensionality

of the globally optimized feature set.

The intersection between the distributions for globally opti-

mized tests is 13.95% and for patch adapted ones is 9.75%
which corresponds to 30% of relative improvement.

Figure 5 shows the histograms of descriptor dimension-

ality after online selection of stable tests. G denotes the

number of globally optimized tests. We can observe that for

G = 256 the average number of locally stable tests is ≈ 100
and for G = 512 it is ≈ 200, which is approximately half of

G. This shows that for each patch, only approximately half

of the binary tests are robust to simple affine deformations.

3. Experiments

In this section we present the evaluation results on sev-

eral datasets and comparisons to state-of-the-art descrip-

tors. For SURF, BRIEF, BinBoost, and DBRIEF, the orig-

inal implementations provided by the authors were used.

For ORB, we use the set of 256 binary tests that are in-

cluded in OpenCV. For SIFT, we use the implementation

from VLFeat.

3.1. Patch dataset

We first evaluate the proposed descriptor using the

dataset from [6] and the evaluation protocol from [6, 16],

based on ROC curves and error rates. We use a set of 100k
patches for our experiments, which are resized to 32× 32.

In Figure 6 (top) we plot the ROC curves for the full set

of the globally optimized binary features of 512 bits com-

pared to the per-patch optimized subsets of our proposed

BOLD descriptor. Our method outperforms the global set

of features for all false positive rates. This is significant,

since it shows the clear advantage of per-patch optimiza-

tions compared to global per-dataset optimizations. It has

to be noted, that although the final BOLD descriptor has

significantly less dimensions involved in the computation

of the distances and it is always a strict subset of the glob-

ally optimized tests, it outperforms the parent superset of

feature dimensions.

In Figure 6 (bottom), we present the results of the com-

parison between our descriptor and other widely used de-

scriptors such as BinBoost, SIFT, SURF, ORB, DBRIEF,
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Figure 6. Top: Globally vs. locally optimized features. Bottom: BOLD compared to several state of the art descriptors. Descriptors with

* are based on simple intensity tests. Using our per-patch optimization framework, performance of SIFT can be matched with simple

intensity tests instead of gradient statistics.

and BRIEF. It is important to note that out of the best per-

forming descriptors i.e. BinBoost, SIFT and BOLD, our de-

scriptor is the only one to use simple binary intensity tests.

Both SIFT and BinBoost use quantized gradient responses

which are capture significantly more information about the

patch statistics. Recently, in [16] it was shown that intensity

binary tests are less effective as descriptor dimensions com-

pared to features based on quantized gradients when opti-

mized globally with the same theoretical framework. Our

results show however that their performance can be greatly

improved by simply using our online per-patch adaptation

framework.

The results of the BOLD descriptor compared directly

with the other descriptors that are based on simple intensity

tests such as BRIEF and ORB, indicate the great perfor-

mance boost from the proposed method.

3.2. Keypoint matching

In this section, we evaluate the proposed descriptor in

image matching, following the framework proposed in [11].

Using the Haris-Laplace detector [12], we extract a set of

keypoints from each of the images and normalise them un-

der a canonical representation. We extract a set of descrip-

tors from all those patches and evaluate them with the orig-

inal protocol from [11]. The results are reported in terms of

recall vs. 1-precision, which is computed based on different

matching thresholds.

In Figure 7 (top) we plot the results for a pair of im-

ages from each sequence from [11] that represents a sig-

nificant transformation. Results of other image pairs are

consistent. Interestingly, SIFT gives the best results over-

all. However, BOLD outperforms SIFT for high precision

part of the curves in Boat, Bikes and Bark sequences. It is

worth noting that although BinBoost performs well in the

patch dataset, it is ranked third in the matching experiment

behind SIFT and BOLD. This may be due to a different

training data used to optimize BinBoost and different fea-

ture points.

In Figure 7 (bottom) we can also observe the improve-

ment introduced by online selection of binary tests in the

intra-class optimization. This advantage of per-patch vs.

global optimization is significant and consistently observed

in all our experiments on different datasets.

3.3. Tracking by detection

In this section, we demonstrate the application of our

method to the tracking by detection problem. Several

works [7, 5] follow the tracking by detection approach in

which a model is initialized in the first frame, and updated

online in order to account for appearance changes. For our

experiment, we used the tracking-by-detection mechanism

from [7] where the online learned detector is based on ran-

dom ferns [13].

We build a detector that is trained in the first frame but

it is not updated online to avoid the influence of various

training examples that can be collected online and alleviate
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Figure 7. Keypoint matching experiment of the benchmark from [11].

the problem of weak binary tests. Our goal is to show the

impact our optimization of the binary tests adapted to the

object to be tracked may have in ferns.

Similarly to [13] our goal is to create a classification sys-

tem based on a set of N simple binary features of intensity

differences, similar to the ones in BRIEF and ORB. Follow-

ing a sliding window approach, which is common among

the state of the art detectors, our goal is to classify each

window candidate as object or background.

Since each of the fi features is a simple test, a num-

ber of those is required to achieve good detection per-

formance. The authors of [13] apply ≈ 300 while the

fern classifier in [7] uses ≈ 130. A complete represen-

tation of the posterior probabilities for each of the back-

ground and object classes is therefore impractical due to

the large number of used binary tests. Thus in [13] N
features are devided into M groups of size N

M
. Each of

those groups forms a fern. The conditional probability be-

comes P (f1, f2, ...fN |object) =
n
∏

i=1

P (Fk|object). Fol-

lowing [7], we use a sum of the probabilities and a thresh-

old tobject = 0.5. Thus, if
n
∑

i=1

P (Fk|object) ≥ tobject we

consider it a valid detection.

The goal of this experiment is to demonstrate that the

performance of the fern detector depends on the choice of

the tests fi. Full randomization in all stages is proposed

in [13], but based on our results from matching the descrip-

tors, we investigate if the per-object adaptation of the binary

features that are included in the ferns, can have an effect on

the final result.

For the results in Table 1, we use the same detector con-

figuration as in [7] with 10 ferns, each consisting of 13 bi-

nary intensity tests. The posterior P (Fk|object) for each

fern is learned only from the first frame, using a set of 200
affine transformations of the original patch plus noise.

We generate a pool of 20 ferns, and compare two strate-

gies for the selection of the final 10 that will act as the clas-

sifier, one global and one adapted per object. In the first

case, we follow the approach of [13] and [7] of randomly

selecting a subset. For the second approach, we evaluate the

posteriors of each fern in our set of 200 positive examples

generated from the object, and we choose the 10 ferns that

minimize the intra-class Hamming binary distance across

the synthesized 200 positive examples.

We test this method in 10 sequences from the recently

published tracking benchmark [21]. We report the recall,

which is # of correct detections
# frames

. We do not report the pre-

cision, since this simple detector/tracker does not update its

model online, its precision is therefore 1 or very close to 1
in most cases.
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Sequence Global Ferns Ferns adapted per object

Subway 0.19 0.28

Jumping 0.26 0.46

Girl 0.44 0.58

Suv 0.25 0.42

Woman 0 0.1

Freeman1 0.07 0.13

Freeman4 0.09 0.16

Deer 0.04 0.18

Crossing 0.3 0.45

Couple 0.03 0.1

Average 0.17 0.29

Table 1. Recall results for 10 sequences of the recently published

tracking evaluation benchmark [21]. We observe that selecting a

subset of ferns per object outperforms a global set of ferns fixed

for all objects.

Distance (512 dimensions) µS

xL ⊕ xR 220

(xL ⊕ xR ∧ yL) + (xL ⊕ xR ∧ yR) 340

Table 2. Performance of the masked Hamming distance, for

1000 pairs of patches. Our proposed masked Hamming distance

presents similar efficiency to the original Hamming distance.

The results reported in Table 1 compare the randomly

generated tests to object-adapted ferns based on our ap-

proach. The per-object optimized ferns perform signifi-

cantly better than the random tests. Similarly to per-patch

online adaptation of descriptors, per-object adaptation of

ferns improves the recall of the detectors. Object track-

ing by detection is an excellent application for the proposed

method, since due to the efficiency requirements the learn-

ing has to be done online and powerful machine learning

methods that require large set of training examples have

limited use.

3.4. Timings

In this section, we discuss the computational efficiency

of our BOLD descriptor with the proposed masked Ham-

ming distance (cf. Section 2.4.3). The results are aver-

aged on a set of 100k patches from the Liberty dataset. All

the experiments were done on an Intel i7-Haswell processor

with the avx-2 instruction set enabled, and all the possible

SIDM optimizations were used (i.e. popcount).

In Table 2, we compare the calculation time to the reg-

ular Hamming distance when matching two binary descrip-

tors. We see that despite the introduction of the symmetric

masked Hamming distance, the matching computational ef-

ficiency remains very high and comparable to that of the

normal Hamming distance, since the only additional opera-

tion is the logical AND with the masks.

In Table 3, we report the running times for extraction

and matching for several of the descriptors reported in the

Descriptor extraction matching total

BinBoost 713 0.11 713.11

SIFT 417 10 427

SURF 48.2 5 53.2

BOLD 10.5 0.34 10.84

DBRIEF 6.8 0.02 6.82

ORB 2.7 0.11 2.88

BRIEF 2.7 0.11 2.88

Table 3. Comparison of efficiency per operation for various feature

descriptors. Time is reported in µS per descriptor.
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Figure 8. The proposed BOLD descriptor has good properties of

of low error rates and high computational efficiency.

results. We can observe that BOLD presents much better

results in terms of 95% error rate and remains competitive

with BRIEF in terms of both extraction and matching speed.

Furthermore, in Figure 8 we plot the performance of

each descriptor in comparison with its computational re-

quirements. We can see that with the proposed framework,

we can achieve error rates similar to the SIFT descriptor,

with extraction times on the level of BRIEF descriptor.

4. Conclusion

We have proposed a novel approach for generating de-

scriptors that are adapted independently per-patch. Our

method relies on binary tests that can be efficiently ex-

tracted, evaluated and selected. We present a full inter-

and intra-class optimization of binary descriptors that is per-

formed online for each image patch.

The results from several experiments on different

datasets show that using a local optimization leads to sig-

nificant improvements over a global one. Furthermore, the

efficiency of the proposed implementation is comparable to

other binary descriptors and significantly better than real-

valued descriptors. Our approach is the first attempt to

use per-patch descriptor with successful results in terms of

matching performance and speed in typical computer vision

applications.

The proposed method can be applied to other techniques

such as decision trees or ferns. An interesting extension

would be to apply the proposed selection approach to quan-

tized gradient based features as in BinBoost or SIFT de-

scriptors.

A free and open source implementation of the BOLD

descriptor is available at http://vbalnt.io/projects/bold/.

2374



Acknowledgement This work has been supported by EU

Chist-Era EPSRC EP/K01904X/1 Visual Sense project.

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up

robust features. In ECCV, 2006. 1

[2] H. Cai, K. Mikolajczyk, and J. Matas. Learning linear dis-

criminant projections for dimensionality reduction of image

descriptors. IEEE TPAMI, 33(2):338–352, 2010. 1, 3, 4

[3] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: binary

robust independent elementary features. In ECCV, 2010. 1,

2

[4] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai,

R. Grzeszczuk, B. Girod. CHoG: Compressed histogram of

gradients a low bit-rate feature descriptor. In CVPR 2009. 1

[5] S. Hare, A. Saffari, and P. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011. 6

[6] G. Hua, M. Brown, and S. Winder. Discriminant embedding

for local image descriptors. In ICCV, 2007. 5

[7] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-

detection. IEEE TPAMI, 34(7):1409–1422, 2012. 6, 7

[8] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary

robust invariant scalable keypoints. In ICCV, 2011. 1

[9] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60:91–110, 2004. 1

[10] G. H. M. Brown and S. Winder. Discriminative learning of

local image descriptors. IEEE TPAMI, 33(1):43–57, 2010. 1,

3

[11] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. IEEE TPAMI, 27(10):1615–1630, 2005.

1, 6, 7

[12] K. Mikolajczyk and C. Schmid. Scale and affine invariant

interest point detectors. IJCV, 60:(1), 63–86, 2004. 6

[13] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast

keypoint recognition using random ferns. IEEE TPAMI,

32(3):448–461, March 2010. 4, 6, 7

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An

efficient alternative to sift or surf. In ICCV, 2011. 1, 4

[15] K. Simonyan, A. Vedaldi, and A. Zisserman. Learning local

feature descriptors using convex optimisation. IEEE TPAMI,

36(8):1573–1585, 2014. 1

[16] V. L. T. Trzcinski, M. Christoudias and P. Fua. Boosting

Binary Keypoint Descriptors. In CVPR, 2013. 1, 2, 4, 5, 6

[17] T. Trzcinski and V. Lepetit. Efficient Discriminative Projec-

tions for Compact Binary Descriptors. In ECCV, 2012. 1,

3

[18] T. Tuytelaars and C. Schmid. Vector quantizing feature space

with a regular lattice. In ICCV, 2007. 2

[19] S. A. J. Winder and M. Brown. Learning local image de-

scriptors. In CVPR, 2007. 1, 2, 4

[20] S. A. J. Winder, G. Hua, and M. Brown. Picking the best

daisy. In CVPR, 2009. 1, 2

[21] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013. 7, 8

2375


